School of Computing

FACULTY OF ENGINEERING

Mobile 3D visualisation techniques in field geology education Evaluation of current tablet applications

Layik Hama

Supervised by

Roy A Ruddle & Douglas Paton

School of Computing

FACULTY OF ENGINEERING

Thanks to:

- My supervisors
 - Dr Douglas Paton
 - Dr Roy A Ruddle
- BGS (collaboration)
 - Patrick Bell (Team Leader Web Systems)
 - Wayne Shelly (iGeology iOS developer)
 - Robert C. Pedley (iGeology 3D Android developer)

Presentation outline

- Research outline
 - Problem & hypothesis
 - Research issues
 - Research case study
- Evaluation
 - Method
 - Results
 - Discussion
- What next?
- Q&A

Michael Jones:

"I would say that what makes smartphones smart, in large measure, is their sense of location"

http://m.theatlantic.com/technology/archive/2013/01/googles-michael-jones-on-how-maps-became-personal/266781/

Research outline (1)

Kastens & Ishikawa 2005

iPad Mini image from: http://www.chipchick.com/2012/10/ipad-miniwhat-you-need-to-know.html

Research outline (2)

- Research:
 - EPSRC PhD in Visualization/Analysis of 3D Geophysical Datasets
 - visualization techniques to aid student geologists do fieldwork more effectively.
- Research issues
 - Extrapolation of 2D features to 3D whitmeyer, S., M. Feely, et al. (2009)
 - Apply observation to different scales whitmeyer, S., M. Feely, et al. (2009)
 - Centuries old techniques Patnode, H. W. and R. Hodgson (1964), K. J. W. McCaffrey, et al. (2005)
 - Geological Maps (2D)
 - Cross sections (2D)
- Nature of data:
 - "Geological data is spatial and temporal" K. J. W. McCaffrey, et al. (2005)
- Hypothesis: tablets & smartphones can help.

Research issues in 3D

Image: Martin-Luther University Halle-Wittenberg. Bitterfeld, Germany 3D PDF Model Available at: http://www.3d-geology.de/interactive/?lang=en [Accessed 25 Jan 2012].

Ingleton case outline:

- Tasks
 - Regional geology overview (MSc only)
 - Locate yourself
 - Observations
 - Locate feature
 - Identify rock
 - Sketch
 - Putting rock into context
 - How immediate location fits into area
 - Making assumptions progressively

Case study location: UNIVERSITY OF LEEDS Ingleton, North Yorkshire, UK

Evaluation: convention V tablets

Evaluation outline

- Participants: student field trips
 - MSc: 9 (Structural geology)
 - Undergrads: 10 (Geophysicists)
- Method:
 - Within participants
 - Normal field trip tasks
 - Baseline: traditional task carried out with & without tablet
- Expert review
 - Comments & review of data (Dr Douglas Paton & Dr Graham McLeod)
- Mostly qualitative
 - Quality of sketch, details and data captured (unquantifiable)
 - Locate yourself (accuracy of location ~meters)

Material

- DEM & satellite imagery
 - Google Earth
- Augmented Reality
 - BGS iGeology3D: geological data over camera view
- Other apps
 - BGS iGeology: 2D geological map + GPS data
 - Polaris Office & PicsArt (35 million downloads): sketching
 - GeoCam (GPS stamp)/SayCheese: picture with GPS stamp
- Conventional
 - Data: printed maps (topographic, geological)
 - Tools: compass clinometers
 - Data collection: notebook and pencil

Evaluation: Procedure

- Participant tasks:
 - 1. Locate yourself
 - 2. Routine sketch
 - 3. Extrapolate feature: participants interpret a geological feature by drawing a sketch of the real view
 - 1. Assisted by printed maps on a notebook
 - 2. Assisted by tablet applications on a tablet application
 - 4. Cross section
- Questionnaire
 - Smartphone ownership
 - Smartphone use in the field
 - Spatial and "map reading" skills

Task 3: Extrapolate feature

Results (1): Questionnaire

- Most owned smartphones & had them on the day
- Most don't user smartphones for fieldwork

Results (2): Extrapolate feature

Results (3): Extrapolate feature

Results (4): Extrapolate feature

- DEM/imagery resolution
 - GE DEM UK (~90m)
 - Useless in <90m outcrops</p>
 - Recognize location
 - Satellite imagery
 - Data shadows (Bellian et al 2005)
 - Steep dipping faces
 - Obscured faces

Discussions

- There isn't an app for that
 - One application solution?
- Revisit the issues
 - Visualize 3D nature
 - Extrapolate feature > apply observations
- Tasks: Extrapolate feature
 - GE data (DEM + Sat imagery) is suitable for areas bigger than data res.
 - Not suitable fore resolution finer than data res.
- Augmented Reality (BGS iGeology3D)
 - Facilitates recognition.
 - In the same category with GE in terms of data resolution
- Subsurface visualization
 - Add it to virtual globes or AR (iGeology3D)
 - Can visualize OBJ models on iOS using NinevehGL

What next?

- Improve data?
 - DEM (30m? or even 2m?)
 - Satellite imagery (0.5m in future)
- Outcrop model
 - LiDAR and images plus other data
 - GIS & smartphone/tablet unfriendly
- The smart edge?
 - Make best use of the available data
 - Hardware goodies
 - Interaction and interface
- 3D Model
 - Subsurface geology?
 - Resolution, again?

Q&A

